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Introduction
In drug discovery, experimental verification of Drug–Target Interactions (DTIs) is so 
expensive and time-consuming that only a small fraction of DTIs have been verified [1–
6]. Therefore, there is a great need for an effective and efficient computational method 
for identifying DTIs.

Recently, with the rapid development of high-throughput techniques, a great deal 
of drug–target interaction data has been generated [7, 8]. Traditional experimental 
verification limits the speed at which new drugs can be identified [9–11]. To meet the 
increasing need for rapid and effective drug discovery, machine learning methods have 
become more and more widely applied to detect potential DTIs from verified DTI infor-
mation [12–16]. Matrix Factorization (MF) [17], one of the most successful methods in 
recommender systems [18], has been widely extended to DTI prediction. For example, 
Cobanoglu et al. [19] adopted Probabilistic Matrix Factorization (PMF) [20] to identify 
the potential drug–target association between chemicals and targets; Gönen [21] devel-
oped MF by adopting chemical and genomic kernels to predict DTI networks; Liu et al. 
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[9] added neighborhood regularization to logistic MF to predict the probability that a 
drug will interact with a target. However, most existing MF-based methods only consid-
ered a linear and shallow relation between a drug and a target, which is insufficient to 
capture the complicated relationship between them.

Recently, great success has been achieved with deep learning models in Computer 
Vision (CV) [22, 23], Neural Language Processing (NLP) [24, 25], and recommender sys-
tems [26–28]. The goal of deep learning models is to capture the higher-order relation 
between input data by their hidden layers [3, 29, 30]. To overcome the limitation of tra-
ditional MF-based methods, many researchers have tried to apply deep learning models 
to the prediction of DTIs. For example, Wang et al. [31] adopted Restricted Boltzmann 
Machines (RBM) [32] to predict DTIs; Gao et al. [33] proposed a neural network com-
bined with a two-way attention network to provide biological insights to interpret the 
drug–target predictions; Altae-Tran et  al. [34] integrated Long Short-Term Memory 
(LSTM) and graph Convolutional Neural Networks (CNN) to obtain meaningful infor-
mation from a few data points. Compared with MF, deep learning models have a greater 
ability to capture deep representation from raw input data.

Although many deep learning models have been proposed to predict potential DTIs, 
little effort has been devoted to explore ranking learning in the prediction of DTIs. To 
comply with the DTI prediction setting, Peska et al. [35] extended Bayesian Personalized 
Ranking (BPR) [36], which has shown excellent performance in various learning tasks; 
Yuan et  al. [37] designed a ranking-based ensemble learning method, DrugE–Rank, 
which is modeled on multiple well-known similarity-based methods to improve predic-
tion performance. But, these methods, based on traditional machine learning methods, 
such as MF and k-Nearest Neighbor (kNN), are insufficient to capture the drug–target 
latent structures, for they do not consider any deep interactions between latent features.

Inspired by the good performance of deep learning models in various tasks, to predict 
DTIs, we designed a neural network architecture, NeuRank, in which, we treat identify-
ing DTIs as a ranking task. Deep learning models are powerful and flexible for learning 
useful representations. Based on Multilayer Perceptron (MLP) architecture, we extended 
a new interaction module for drugs and targets to better model their relationship. Then, 
for better performance, we developed our model from a point-wise to a pair-wise and 
further to a list-wise method. In the pair-wise method, we assume that the observed 
DTIs, which have been experimentally verified, are more trustworthy and more impor-
tant than the unknown ones. Thus, we model the relative ordering from each pair of 
targets to make predictions, and learn to rank by optimizing a pair-wise loss function to 
find the correct ranking for all targets. And in the list-wise method, we seek to maximize 
the top-one probability of targets in the ranking list.

Many works have shown that drugs with similar chemical structures have similar 
therapeutic functions [38–40]. This information is used to enrich latent factors and 
strengthen the presentation ability of the models. For example, Zheng et  al. [38] pro-
posed a model, Multiple Similarities Collaborative Matrix Factorization (MSCMF), 
which learns low-rank features first and then combines them with weighted similarity 
matrices over drugs and targets for prediction; Zhang et al. [41] adopted drug feature-
based and disease semantic similarities as constraints for drugs and diseases; Laar-
hoven et  al. [42] using chemical similarity and interaction information about known 
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compounds, applied the nearest neighbor algorithm to construct an interaction score for 
drugs. The methods with similar information are able to make better predictions than 
other methods without any additional information. Thus, for better build relationships 
between drug–drug and target–target, a similarity calculation method is used to learn 
the link between these data.

Our contributions are summarized as follows: 

(1) We solved the DTI problem by using neural networks with a strong ability to cap-
ture non-linearity from raw data and learn deep features from a ranking learning 
perspective;

(2) To better predict DTIs, especially for new drugs and targets, we added drug–drug 
and target–target similarities to our model;

(3) For different applications, we developed three neural networks from point-wise to 
pair-wise learning and further to list-wise learning.

The rest of the paper is organized as follows: “Related work” section briefly reviews the 
background and some related work. “Proposed methods” section presents our proposed 
models in detail. “Experiments” section describes the experimental results for several 
data sets to show the performance of our models. “Conclusion” section gives the conclu-
sion and provides future directions.

Related work
First, we discuss the problem to be solved and define the notations that are used in the 
rest of the paper. Then, we introduce two MF-based methods, which are closely related 
to our model: a traditional one Collaborative Matrix Factorization (CMF), and a pair-
wise ranking learning one, BPR.

Problem definition

Given a DTI matrix, Y ∈ R
n×m , with a set of n drugs, D , and a set of m targets, T  , and 

element, ydt ∈ {0, 1} . If drug, d, has been experimental verified to interact with target, 
t, then ydt = 1 ; otherwise, ydt = 0 . P ∈ R

n×k and Q ∈ R
m×k denote the low-rank latent 

features of drugs and targets, respectively, where k denotes the number of latent fea-
tures. pd and qt denote the latent features of drug, d, and target, t, respectively. The goal 
of MF for DTIs is to learn P and Q to reconstruct Y :

where V  denotes the set of interactions that have been experimentally verified; �·�2F 
denotes the Frobenius norm; � denotes a regularization coefficient.

CMF

CMF, proposed in [38], adopts multiple kinds of drug–drug and target–target similari-
ties. The objective function of CMF is defined as follows:

(1)arg min
p,q

∑

(d,t)∈V

(
ydt − pdq

T
t

)2
+ �

(
�P�2F + �Q�2F

)
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where � , �d , and �t denote regularization coefficients; Sd ∈ R
n×n denotes the similarity 

matrix for drugs, and St ∈ R
m×m denotes the similarity matrix for targets.

The first term, MF, learns low-rank latent features, P , and, Q , to reconstruct Y  ; the 
second term is L2 regularization to prevent the model from over-fitting; the last two 
terms are regularizations, which minimize the squared error between Sd and PPT , and 
between St and QQT . The key idea is that the similarity between drugs or targets should 
be approximated by the inner product of the corresponding two feature vectors.

BPR

DTIs provide only very few verified instances to train; therefore, it is inherently difficult 
to uncover the interaction probability between drugs and targets. Instead of directly pre-
dicting the absolute probability of DTIs, BPR uses pair-wise ranking loss to model the 
relative order between observed and unobserved interactions.

Based on BPR, Peska et  al. [35] developed the DTI prediction model, which has 
shown promising power in personalized recommendations. The key idea of BPR is that 
observed interactions should be ranked higher than unobserved ones [36]. The goal of 
BPR for DTI predictions is to learn the probability that a drug will interact with a target. 
BPR aims to maximize the posterior probability that drug, d, interacts with the pair tar-
gets of t and i: p(θ |t >d i) , where θ is the set of learning parameters. The posterior prob-
ability is defined as follows:

Then, the probability that drug, d, interacts with target, t, rather than i is defined as 
follows:

where σ(x) = 1/(1+ exp(−x)) is the sigmoid function, and ŷdt and ŷdi are the predicted 
scores for targets t and i with drug, d, respectively. ŷdt , estimated by MF, linearly com-
bines drug and target features as follows:

where pd and qt denote the latent features of drug, d, and target, t, respectively.
Finally, based on Bayesian inference, the objective function of BPR, which minimizes 

the pair-wise ranking loss for all pair instances, is defined as follows:

(2)

arg min
p,q

∑

(d,t)∈V

(
ydt − pdq

T
t

)2
+ �

(
�P�2F + �Q�2F

)

+ �d

∥∥∥Sd − PPT
∥∥∥
2

F
+ �t

∥∥∥St −QQT
∥∥∥
2

F

p(θ |t >d i) ∝ p(t >d i|θ) · p(θ)

(3)
p(t >d i|θ) = σ

(
ŷdti

)
,

ŷdti = ŷdt − ŷdi.

(4)ŷdt = pdq
T
t

(5)L = −
∑

(d,t,i)∈F

lnσ
(
ŷdt − ŷdi

)
+ ��θ�2F
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where F =
{
(d, t, i)|d ∈ D ∧ t ∈ V+

d ∧ i ∈ V−
d

}
 denotes that drug, d, tends to interact 

with target, t, rather than i, where, when given a drug, d, V+
d = {t ∈ T |ydt = 1} denotes a 

set of targets that have been experimentally verified to interact with d. V−
d  is the rest, and 

� is the regularization parameter.
Both CMF and BPR are MF-based methods, which are linear in nature. Therefore, 

when compared to nonlinear methods, they have limited performance [27, 43]. Inspired 
by the idea from BPR for ranking learning in DTI prediction and the good performance 
of NeuMF [43] in recommender systems, we developed a neural network to promote 
DTI prediction in ranking perspective.

Proposed methods
Methods for one-class data, i.e. data with only positive examples, are classified into three 
categories: point-wise regression, pair-wise, and list-wise methods. Point-wise regres-
sion methods directly optimize the absolute value of binary interaction. Pair-wise rank-
ing methods assume that drugs have a higher possibility to interact with verified targets 
rather than unverified ones. And list-wise ranking methods seek to maximize the top-
one probability of targets in the ranking list.

In this section, we build our NeuRank to learn simultaneously the latent features 
of DTIs and similarity information. First, we introduce in detail the framework of the 
point-wise method, NeuRank. Then, we develop our model from point-wise to pair-wise 
learning and further to list-wise learning. The purpose of our models is to predict the 
probability that a drug will interact with a target from observed DTIs.

Framework

Point-wise methods, which consider unobserved interactions to be inherently negative, 
combine the latent features of drugs and targets to predict the score used to rank. Fig-
ure 1 illustrates the network framework of NeuRank, which consists of the following five 
layers: input, embedding, interaction, hidden, and prediction.

Fig. 1 Framework of NeuRank. NeuRank, a point-wise network, consists of the five layers: input, embedding, 
interaction, hidden, and prediction
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Input and embedding layers The role of the embedding layer is to transfer drug and 
target IDs from the input layer to latent representation space and map the sparse features to 
dense features as follows:

where P ∈ R
n×k and Q ∈ R

m×k denote the embedding matrices for drugs and targets, 
respectively; d and t denote the one-hot encoding representation of the ID of a drug 
and a target, respectively, and their embedding vectors qd ∈ R

1×k and qt ∈ R
1×k , 

respectively.
Interaction layer The role of the interaction layer is to model the interactions between 

drugs and targets in the shallow layer. The interaction layer, which captures the row-rank 
relations between drugs and targets, is defined as follows:

where f (·) denotes the interaction functions between pu and qi , such as concatenation, 
element-wise product, and element-wise sum. We chose element-wise product as our 
interaction function.

Hidden layers The role of the hidden layers is to learn nonlinear correlations between 
drugs and targets. Hidden layers provide neural networks a powerful ability to model the 
high-rank relationships between features as follows:

where W l , bl , hl and a(·) denote weight, bias, output, and activation functions of the l-th 
( 0 < l ≤ L ) layer, respectively. The ReLU function is used as our activation function.

Prediction layer The role of the prediction layer is to compute the probability that a drug 
will interact with a target. The output, ŷdt , is defined as follows:

where σ(·) denotes the sigmoid function.
In NeuRank, the square loss function is used to evaluate loss and the L2 norm is used to 

regularize all learning parameters:

where � denotes the learning parameter set of NeuRank.

(6)pd = PTEd

(7)qt = QTEt

(8)h0 = f
(
pd , qt

)

(9)

h1 = a
(
W T

1 h0 + b1

)

· · ·

hL = a
(
W T

L hL−1 + bL

)

(10)ŷdt = σ(W T
L+1hL + bL+1)

(11)L1 =
∑

(d,t)∈V

(
ydt − ŷdt

)2
+ ��(�),
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Pair‑wise NeuRank

To make predictions, pair-wise methods model the relative ordering from each pair of tar-
gets. In contrast to the point-wise method, pair-wise methods assume that observed inter-
actions are more trust worthy than unobserved ones. Then, NeuRank is developed from 
point-wise to pair-wise learning NeuRank (pNeuRank). Illustrated in Fig. 2 is the network 
framework of pNeuRank.

In pNeuRank, we assume that an experimentally verified target that interacts with a drug 
will be assigned a higher value than an unverified target. Thus, the objective function is 
defined as follows:

where F =
{
(d, t, i)|d ∈ D ∧ t ∈ V+

d ∧ i ∈ V−
d

}
 denotes that drug, d, tends to interact 

more with target, t, than with i; �p , �d and �t are the regularization parameters; and �p 
denotes the learning parameter set of pNeuRank.

In pNeuRank, the first four layers (input, embedding, interaction, and hidden) are the 
same as in the previous NeuRank framework. The key difference is the final output layer, 
ŷdti , defined as follows:

where ŷdt is the output of the final hidden layer when given an observed interaction 
between drug, d, and target, t; ŷdi is the output when given an unobserved interaction 

(12)L2 = −
∑

(d,t,i)∈F

lnσ
(
ŷdt − ŷdi

)
+ �p�

(
�p

)
,

(13)ŷdti = σ (̂ydt − ŷdi)

Fig. 2 Framework of pNeuRank. pNeuRank, a pair-wise method, assumes that observed interactions are 
more trust worthy than unobserved ones. It consists of the five layers: input, embedding, interaction, hidden, 
and prediction
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between drug, d, and target, i; and σ(·) denotes the sigmoid function to bound the gap 
between the two values.

List‑wise NeuRank

Finally, we design a list-wise framework, lNeuRank, to predict the potential DTIs. In 
lNeuRank, we seek to maximize the top-one probability of targets in the ranking list. 
The framework is shown in Fig.  3. In Fig.  3, in the list of (K + 1) targets for training, 
there are one positive instance, and K negative instances sampled from drug d. q_i  , where 
i ∈ [1,K ] , denotes the embeddings from negative instances.

Similarly, in lNeuRank, the first four layers (input, embedding, interaction, and hid-
den) are the same as in the previous NeuRank framework. The key difference is the final 
output layer, ŷdt , defined as follows:

where xdt denotes the output from the final hidden layer. We chose the softmax function 
to map the results from the hidden layer to prediction. The probability ŷdt that target t 
ranks at the top-one for drug d is defined as follows:

(14)ŷdt = softmax(xdt),

(15)ŷdt =
exdt

∑K+1
i=1 exdi

.

Fig. 3 Framework of lNeuRank. lNeuRank seeks to maximize the top-one probability of targets in the ranking 
list. It consists of the five layers: input, embedding, interaction, hidden, and prediction



Page 9 of 17Wu et al. BMC Bioinformatics          (2021) 22:567  

Then, loss is evaluated by cross entropy, which used to measure the distribution between 
the true list and the predicted list from the ranking model, is defined as follows:

where l+d  and l−d  denote the verified and unverified interaction list of drug d, respectively; 
and �l denotes the learning parameter set of lNeuRank.

Similarity information

Based on the assumption that similar drugs will interact with similar targets, and vice 
versa, we added drug–drug similarity and target–target similarity networks to our 
model. The chemical structure similarity between compounds and the sequence simi-
larity between target proteins are critical for improving the prediction of DTIs, espe-
cially when few DTIs are available. Therefore, to predict the interaction from new drugs/
targets, we added that similarity information to our models. Similarity regularization is 
defined as follows:

where �(·) is the function to measure the distance between predicted and true simi-
larities. An function which measures the distance from the true values as shown in the 
following:

Finally, the objective function is defined as follows:

where Li is the loss function of NeuRank Eq. 11, pNeuRank Eq. 12, lNeuRank Eq. 16, 
respectively.

Sampling for imbalance data

Since only a small fraction of DTIs is verified, which causes the imbalance data problem, 
i.e. the number of known DTIs is much larger than the number of unknown DTIs. The 
imbalance data used to train model will lead to poor performance.

To alleviate this problem, negative sampling, an effective method, is used. In general, 
the negative sample is proportional to the number of positive sample for each drug/tar-
get. The negative DTIs are randomly selected from a set of unobserved DTIs with an 
equal probability.

(16)L3 = −

n�

d=1




�

t∈l+d

logŷdt +
�

i∈l−d

log
�
1− ŷdi

�


+ �l�(�l),

(17)Ls = �d�(θd)+ �t�
(
θ t
)

(18)�(θd) =

∥∥∥Sd − PPT
∥∥∥
2

F

(19)�
(
θ t
)
=

∥∥∥St −QQT
∥∥∥
2

F

(20)L
′ = Li + Ls
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Experiments
First, we introduce the data sets used in our experiments; then, we present the baselines 
we used as comparisons with our models and the metrics we adopted for evaluation; 
finally, we conduct the experiments in detail and make a detailed analysis.

Experimental setting

Data sets We performed experiments on five public data sets: DrugBank, Nuclear 
Receptors, G-Protein-Coupled Receptors (GPCRs), Ion Channels and Enzymes. The first 
data set, which contains information on drugs and targets created and maintained by 
the University of Alberta and The Metabolomics Innovation Centre, is available at Drug-
Bank Database1. As both a bioinformatics and a cheminformatics resource, DrugBank 
combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with 
comprehensive drug target (i.e. sequence, structure, and pathway) information [44]. And 
the rest data sets, whose observed DTIs were extracted from public databases KEGG 
BRITE [45], BRENDA [46], SuperTarget [47], and DrugBank [48], are available at: http://
web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. The drug chemical structure informa-
tion is retrieved from the KEGG LIGAND [45], and the three-dimentional structure of 
target protein is retrieved from PDB [49]. Each one contains three types of information: 
1) verified DTIs; 2) drug similarities; and 3) target similarities [50]. Table 1 lists some 
statistics about the verified DTIs in all the data sets.

Drug–drug similarities are computed by SIMCOMP [51], which uses a graph method 
to model the size of the common substructures between two compounds. Target–tar-
get similarities are computed by normalized Smith-Waterman [52], which measures the 
similarity scores between the amino acid sequences of two proteins.

Evaluation metrics Following previous works [1, 9, 35, 38], two popular metrics: Area 
Under the Precision–Recall (AUPR) and Area Under the Curve (AUC), are used for per-
formance evaluation in the prediction of DTIs. To evaluate our proposed methods, we 
used 10–fold Cross Validation (CV) and compared it with other baseline approaches. In 
10–fold CV, the data set is randomly divided into 10 equal sized subsets. Of the 10 sub-
sets, a single subset is retained as the validation data for testing the model; the remain-
ing 9 subsets are used as training data. CV is then repeated 10 times, with each of the 
10 subsets used exactly once as the validation data. The 10 results are then averaged to 
produce a single estimation. An AUC score is estimated in each repetition of CV; finally, 

Table 1 Statistics about data sets

The statistics information contains names of data sets, number of drugs, number of targets, and number of interactions

Data sets # of Drugs # of Targets # of Interactions

DrugBank 5018 2325 15,140

Enzymes 445 664 2926

Ion channels 210 204 1476

GPCRs 223 95 635

Nuclear receptors 54 26 90

1 http:// www. drugb ank. ca.

http://www.drugbank.ca
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the average score over all five repetitions is determined. The AUPR score is estimated in 
the same way.

In DTIs tasks, the main purposes are to effectively detect potential DTIs and discover 
new drugs. Thus, we conducted CV under the following two different settings:
CVdt : CV on drug–target pairs In this case, we randomly chose 90% of the drug–tar-

get pairs in Y  as training data and the remaining 10% as testing data;
CVnd : CV on new drugs In this case, we randomly chose 90% of the rows in Y  as train-

ing data and the remaining 10% as testing data;
Baseline approaches To illustrate the effectiveness of our models, we compared our 

models with the following methods:

• PMF, the probabilistic MF, uses dot products on the latent features of drugs and tar-
gets to make predictions [19];

• CMF, the state-of-the-art MF-based method, models on, not only DTIs, but also 
drug–drug and target–target similarities [38];

• BRDTI, the state-of-the-art BPR-based method, extends the BPR method by adding 
similarity information and target bias [35];

• RBM, a shallow neural network-based method for DTI prediction, its visible units 
encode observed types of DTIs, and its hidden units represent latent features 
describing DTIs [31];

• DeepDTIs, the state-of-the-art deep learning method, uses Deep Belief Networks 
(DBN) to predict DTIs, without taking similarity information into consideration [29].

Parameter settings Our models have seven key parameters: latent feature size (k), 
learning rate ( τ ), the number of hidden layers (l), batch size (b), one regularization 
parameter for learning parameters ( � ), and two regularization parameters for similarity 
information ( �d and �t ). These parameters and factors were determined by grid-search 
on the validation error. In grid-search, k is chose from {8, 16, 32, 64, 128} ; τ is chose from 
{10−4, 10−3, 10−2, 10−1} ; l is chose from {1, 2, 3, 4, 5} ; b is chose from {64, 128, 256, 512} ; 
� , �d , and �t are chose from {10−4, 10−3, 10−2, 10−1, 1} . And the Adam optimizer is chose 
to optimize our objective function.

Results and analysis

Overall performance First of all, some experiments involved investigation to verify the 
performance of our methods on different data sets. Table 2 shows the AUC and AUPR 
scores obtained from all the methods under the setting CVdt.

As shown in Table 2, in most cases, performances of all our models are higher com-
pared with the results of other baseline approaches on the same data set. Also, lNeuRank 
attains the best AUC and AUPR values over the large data sets (DrugBank, Enzymes, 
and Ion Channels). On DrugBank, Enzymes, and Ion Channels, in terms of AUC, lNeu-
Rank achieves 2.81%, 5.21% and 2.86% higher than the best baseline method, DeepDTIs, 
respectively; and in terms of AUPR, lNeuRank achieves 0.94%, 1.14% and 0.18% higher 
than DeepDTIs, respectively. These results indicate that, in the large data sets, when 
using neural networks, our model makes high quality predictions.
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From the results shown in Table 2, we conclude the following: (1) on the large data 
sets, lNeuRank >pNeuRank >NeuRank, which indicates that large data sets contain 
sufficient ranking information for our models to learn accurate features; (2) on the 
two smallest data sets (GPCRs and Nuclear Receptors), our models achieve worse 
results than DeepDTIs for these two cases, and a common trend in all cases is Neu-
Rank >pNeuRank >lNeuRank. The best possible reason is that both data sets are 
too small to contain enough information to make a ranking comparison of DTIs; (3) 
PMF and CMF exhibit inferior performance on all data sets, indicating that the inner 
product is insufficient to capture the complex relations between drug and target; (4) 
BRDTI achieves higher AUPR values than CMF, and pNeuRank higher than NeuRank 
over all data sets, illustrating that adding pair-wise information can boost the per-
formance of the models; (5) on all data sets, RBM has the worst results, indicating 
that shallow networks without similar information do not make good predictions; (6) 
NeuRank and pNeuRank capture the nonlinear correlations of latent features via their 
deep learning strategies; therefore, NeuRank and pNeuRank generally outperform 
PMF and BRDTI, respectively. Because our models capture the non-liner correlations 
of the features, they consistently outperform all other baselines. In summary, within 
the same data set, our methods outperform other competitive approaches, which sug-
gests that the deep learning technique is an effective tool to extract more meaningful 
features to detect true DTIs.

Effect of similarity information. Next, we study how similarity information benefits 
the prediction of DTIs under settings, CVnd . In this experiment, we set a same value for 
both �d and �t . The results obtained under the setting, CVnd , for new drugs is shown in 
Table 3. The best results are shown in bold.

The results in Table 3 show that our methods, compared with other methods under 
different settings, yield optimal AUC and AUPR values, indicating that our method, 
with similarity information, achieves consistently accurate prediction results across all 
data sets. Compared with the performance in the setting CVdt , after including similarity 
metrics, our models, BPDTI, and CMF achieve comparable results in the setting CVnd , 
indicating that adding similarity information to the models is very effective for finding 
new DTIs. Therefore, it is clearly seen that considering multiple similarities is critical for 
optimal prediction performance.

Table 2 AUC and AUPR values of all methods on five data sets under the setting CVdt

Data sets PMF CMF RBM BRDTI DeepDTIs NeuRank pNeuRank lNeuRank

DrugBank AUC 0.8132 0.8623 0.7778 0.8685 0.8761 0.8941 0.8983 0.9007
AUPR 0.6278 0.7866 0.6984 0.8272 0.8409 0.8423 0.8456 0.8488

Enzymes AUC 0.8410 0.8785 0.7833 0.8834 0.9067 0.9483 0.9502 0.9539
AUPR 0.7042 0.7488 0.6693 0.7329 0.7547 0.7579 0.7602 0.7633

Ion Channels AUC 0.8422 0.8974 0.7923 0.9234 0.9417 0.9661 0.9678 0.9686
AUPR 0.7693 0.8034 0.7045 0.8255 0.8478 0.8389 0.8469 0.8493

GPCRs AUC 0.8015 0.8244 0.7539 0.8487 0.8603 0.8561 0.8595 0.8615
AUPR 0.5292 0.5435 0.4866 0.5542 0.5778 0.5461 0.5548 0.5532

Nuclear Receptors AUC 0.7444 0.7637 0.6885 0.7962 0.8043 0.7867 0.7890 0.7832

AUPR 0.3127 0.3463 0.2589 0.3644 0.3885 0.4736 0.4501 0.4378
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To further illustrate the similarity information effects on the prediction of DTIs, we 
conducted experiments using the DrugBank data sets. In these experiments, we ran-
domly selected one interaction of each drug as testing data and the remainder as train-
ing data. Then, we ranked all unobserved DTIs by our trained models. We compared 
NeuRank with its simplified version without similarity information and selected three 
examples. The experimental results are shown in Table 4.

From Table 5, it is seen that, compared with the simplified version without similarity 
information, the predictions of NeuRank, in all cases, are always more accurate. Without 
similarity information, not only does the previous method incorrectly predict a target in 
the top-4 results in the first case, but also achieves worse results in the other cases. In 
summary, similarity regularization shows strong improvement over our method.

Effect of hidden layers depth (l). In addition, we studied the impact of hidden lay-
ers depth on the prediction of DTIs for our models. In this experiment, the number of 

Table 3 AUC and AUPR values of all methods on five data sets under the setting CVnd

The best results are shown in bold

Data sets PMF CMF RBM BRDTI DeepDTIs NeuRank pNeuRank lNeuRank

DrugBank AUC 0.7816 0.8427 0.6935 0.8520 0.8278 0.8659 0.8683 0.8694
AUPR 0.5371 0.6188 0.5607 0.6258 0.6043 0.6236 0.6285 0.6317

Enzymes AUC 0.8259 0.8616 0.5093 0.8667 0.8538 0.9229 0.9268 0.9283
AUPR 0.5183 0.5591 0.4380 0.5604 0.5325 0.5775 0.5826 0.5863

Ion Channels AUC 0.8086 0.8640 0.6476 0.8754 0.8539 0.9092 0.9118 0.9142
AUPR 0.5273 0.5601 0.4269 0.5896 0.5634 0.6098 0.6130 0.6151

GPCRs AUC 0.5645 0.6328 0.5006 0.6379 0.5993 0.6557 0.6532 0.6598
AUPR 0.3374 0.3742 0.3059 0.3865 0.3570 0.3988 0.4020 0.3781

Nuclear Receptors AUC 0.6095 0.6537 0.5583 0.6610 0.6328 0.6645 0.6573 0.6522

AUPR 0.2396 0.3517 0.1470 0.3845 0.3329 0.4882 0.4796 0.4605

Table 4 Example prediction of similarity effect

True targets are marked in bold

Drug ID top NeuRank without similarity NeuRank 
with 
similarity

DB00122 1 Q05586 Q8NE62
2 P18505 P00918

3 P10635 Q05586

4 O60656 Q9Y5N1

DB01151 1 Q8N142 P10635
2 P10635 Q9H4B7

3 P00519 Q8N142

4 P69905 O60603

DB08271 1 O14764 P39900
2 Q16539 Q02318

3 P08581 P35916

4 P39900 O14764
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Fig. 4 Effect of hidden layer depth of our models on five data sets under the setting CVdt . It shows the 
performance of AUC and AUPR as the number of hidden layers goes from one to five by step one

Table 5 Effect of embedding size

It shows the performance of AUC as the number of embedding size is changed

Data sets k NeuRank pNeuRank lNeuRank

DrugBank 8 0.8737 0.8785 0.8816

16 0.8911 0.8948 0.8972

32 0.8941 0.8983 0.9007

64 0.8858 0.8894 0.8920

128 0.8415 0.8463 0.8502

Enzymes 8 0.9469 0.9485 0.9502

16 0.9479 0.9496 0.9519

32 0.9483 0.9502 0.9539

64 0.9417 0.9434 0.9456

128 0.9036 0.9077 0.9118
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hidden layers goes from one to five by step one under the setting, CVdt , on all data sets. 
Figure 4 shows the performance of AUC and AUPR as the number of depth is changed.

As seen in Fig. 4, on the large data sets, DrugBank and Enzymes, the performance of 
NueRank remains stable as depth increases; on the small data sets, Ion Channels, GPCRs 
and Nuclear Receptors, the performance of NueRank decreases as depth increases. Deep 
neural networks have a strong ability to express features; however, for the small data 
sets, too many parameters can easily lead to over-fitting. Therefore, we conclude that a 
sensible number of hidden layers is indeed helpful for improving the model.

Effect of embedding size (k). Finally, we illustrate the effects different embedding 
sizes (latent feature sizes) have on prediction under the setting CVdt in our proposed 
models. For simplicity, we conducted experiments on two largest data sets: DrugBank 
and Enzymes, and use AUC to evaluate. In this experiment, the embedding size was 
selected within the range {8, 16, 32, 64, 128} . The effect embedding size has on the per-
formance of our models is shown in Table 4.

As seen from Table 4, our methods achieve best results when k = 32 . And k increases, 
there is a clear increasing trend in the AUC values until the maximum is reached at 
k = 32 ; then, at k = 64 , there is a slight decrease. Thus, it is seen that an embedding size 
that is too large causes the model to be over-fitting; an embedding size that is too small 
causes the model to be under-fitting. Consequently, an appropriate size is important for 
the model to learn meaningful and accurate features and perform well.

Conclusion
Prediction of DTIs plays an import role in the drug discovery process. We proposed 
three novel methods, NeuRank, pNeuRank, and lNeuRank, to predict the interac-
tion probability. Our models are neural network architectures, which have a powerful 
ability to effectively learn nonlinear and deep features for predicting DTIs. In addi-
tion, especially for new drugs and targets, some similarity information is added to our 
models for better performance. Experimental results show that, compared with base-
line approaches, our methods achieve better performance and higher quality. What is 
more, our methods can provide useful hits for further biological study of drug discov-
ery and development.

In future work, first, we plan to integrate more biological information to further 
improve our models; second, because similarity computation plays a critical role in 
learning accurate latent features, we plan to explore other nonlinear techniques to 
combine similarity matrices for drugs and targets; finally, for wider application, we 
will try to incorporate our models with other deep learning models.
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